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Abstract—This paper analyses the plastic wrinkling of an annular plate subjected to in-plane
uniform tension stress on its inner edge with the combined use of the Kantorovich method and the
Galerkin method. and discusses the appearance of wrinkles on the flange of a metal circular sheet
during its axisymmetric deep-drawing operation. It is shown that the method provided in this paper
is simple, convenient, and very suitable for engincering applications.

NOTATION
a inner radius of an annular plate
b outer radius of an annular plate
c undetermined cocflicient in approximate wrinkling mode
D, parameter defined by eqn (17)
£ Young's modulus
ELE] secant moduli of effective stress -strain curve and uniaxial stress strain curve, respectively
¢, deviatoric strain components
! function of non-dimensional radial coordinate p
4 function of circumferential coordinate ¢
1.1, ditferential operators
n number of waves
r i polar coordinates
Sy deviatoric stress components
t plate thickness
w mode of wrinkling
Y yicld stress of the plute material
&, strain components
£ cffective strain
{ non-dimensional parameter defined by eqn (29)
Ay Ar iy parameters defined by egns (26)
v Poisson’s ratio in the elastic regime
Ve parameter defined by eqn (19)
N non-dimensional parameter, 1 —p
Peby non-dimensional radial coordinate, r/b, and one of its values, a/b
g effective stress
s, stress tensor
N parameters defined by egqns (3a) and (3b), respectively.

I. INTRODUCTION

When the inner edge of an annular plate is loaded by an in-plane uniform tensile stress, the
stress state of the plate, according to the theory of plasticity, can be expressed as

o, = Yln (b/r)
gs = Y[In (b/r)—1] n
ga=0

if the plate material is regarded as being perfectly plastic and the total plate has yielded. As
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Fig. 1. An annular plate under in-plane tension.

the circumferential stress, o,. is compressive (Fig. 1), plastic buckling will occur cir-
cumferentially, when the uniform boundary stress, o,, reaches a critical value. This appear-
ance is called plastic wrinkling.

Investigation of wrinkling has a great deal of significance in many branches of mech-
anical engincering. especially in the axisymmetric deep-drawing process of circular metal
sheets (Fig. 2). Engineers require that the flange of a workpiece in its deep-drawing operation
should deform in its plane and not wrinkle because otherwise it will impair the quality of
the product. For this rcason the wrinkling of an annular platc has been the focus of much
rescarch attention over several decades. Geekeler[1] simplificd the problem and treated it
as a one-dimensional model, furnishing some formulae to predict the critical circumferential
stress and the number of waves. His model was later employed and extended by many other
rescarchers[2-4]. Reference [§] realized the limitation of Geckeler's one-dimensional model
and studied the problem using a two-dimensional one by means of the energy method.
However, as recently pointed out by the authors[7], their results may still be too simplistic
for general application.

In this paper, the plastic wrinkling equation is derived based on the aspect of stability
according to the two-dimensional model for the wrinkling analysis of an annular plate in
Ref. [5]. and then the title problem is solved by the combined use of the methods of
Kantorovich and Galerkin[8). The criterion for predicting plastic wrinkling is obtained and
the applications of the present results to the deep-drawing operation in sheet forming are
discussed in detail. Some useful conclusions are obtained. It is shown that the method
provided in this paper is simple, convenient and very suitable for engineering applications.

2. SOLUTION

to

L. Plastic wrinkling equation
According to the theory of plasticity[5], we have

{(5(.’” = Q//(SSU
Ot = POTL

Fig. 2. The wrinkling of a flange in deep-drawing operation.
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where ¢, and s, are deviatoric strain and deviatoric stress tensor, and ¢, and o, are
strain and stress components, respectively. The notation “d(x)” indicates an infinitesimal

increment of a corresponding physical variable. Parameters ¢ and ¢ are defined by
(3a)

¢=(1-22)/E
(3b)

and
¥ = 3£/(26)

where E is Young's modulus and v Poisson’s ratio. £ and ¢ are effective strain and effective

stress, and are defined by

respectively. By introducing the secant modulus
4)

E, =d/é

the following expression can be obtained from the uniaxial stress-strain state;
(5)

| [—~2v

1
=E;+ IFE

E}

where £ is the secant modulus of the uniaxial stress-strain curve. In this way, we get
(6)

For the annular plate shown in Fig. 1, wrinkling always occurs first at the outer edge
because |0y, ..» is maximum through the plate, according to eqns (1). Therefore, the following
selection is wise and convenient for the wrinkling prediction of the annular plate, that is

(7

E? = Eﬂr-b-

Keeping these in mind and noting that stresses are uniformly distributed through the plate
thickness before wrinkling occurs so that £, is independent of the coordinate =, the wrinkling

differential equation for the annular plate can be expressed as

0w 1ow 1 *w
40— S - — [ —— = b
DV n [N, pp +N“(r 3 + pe 601)] 0 (8)
where
N, =to,, Ny=to, 9)
? 128 1Y%
4 = e - — e
Vi ((7!’ + ror + r* oo ) (10
{an

b = }/[6(1 +PEW].

Obviously, when E? = E, eqn (8) reduces to the elastic wrinkling equation
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Substituting eqns (1) into eqn {8}, and introducing the notation

p=rlb

(12)

the non-dimensional plastic wrinkling equation of the annular plate can be written as

D,Viw+in (p)Viw+Ow =0

where
L F e e
%t pdp p7 O
V= viy?
gole, 1@
pép  p? il
and

, = LY (1 +pENY].

2.2, Approximuate solution

13

(14)

(15)

(16)

an

For the flange of a metal sheet shown in Fig. 2, the following boundary conditions can

be given when the flange is considered as an annular plate mentioned above :

w20 p,<p<l

w:-.{}, p‘_‘pg

Fw
ék;i‘*-vﬁm“’:o‘ p=p, and |
where
V# = (’ w(bE?);:"
and

Py = alb.
Assuming that eqn (13) has a solution of the form

w(p,0) = f(p)g(6)

{18a)
(i8b)

(18¢)

(19

20

2hH

then according to the observation from experiment (Fig. 2) and condition (18a), we can
take g(0) = 1 +cos (n0), where n is the number of waves. Therefore, the following equation

can be obtained casily by applying the well-known Kantorovich method :

D, L(N)-L:(N)=0

where L, and L, are differential operators, i,

(22)
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& 6 d 3+2* & 3+2n* d  A(nP-9)
— . sttt —— 23
p’ dp* " p dp e @)

-

a3 d n?
L,= —{3 In (o) gz + S [1+1n (PN 5 + ;L:[ln (p)— l]}. 24)

It is difficult to obtain the exact solution of eqn (22). although it is an ordinary differential
equation. Hence, we use the Galerkin method to get its approximate solution. To do so,
we take

S ) = c(p* —pip*). (25)

This expression satisfies conditions (18a) and (18b), and meets condition (18c) in the sense
of the Kantorovich approach. In eqn (25), c is an undetermined coefficient and

'{l = %(I—V*‘f';.])

Ay=il-v, -4y (26)
L=[(1=v,) +3v,n]"
are the constants dependent on the properties of the plate material. Substitution of eqn (25)
into the Galerkin equation, eqn (22), leads to
! ]
D, J Li(N(ph —=plpp™) dl'—f Ly(f) (ph ~pp™) dp = 0. 27
(M P g
To obtain the non-trivial solution of cgn (22) as the form of eqn (25), it is necessary to take
t 1 )
D, J Li(p* = pipp*) (0 = plpp’) d/)—f Li(phr —plp*) (0l = plep*) dp = 0. (28)
7

. "

Considering that

E:) . 0 0
D, = 3 [BU+SE) B-9E)
eqn (28) can be rewritten as
1 ‘ . . | i
E): .[ Laphr=ppp®) (' —ppp) dp |
{= \/(.Y:)b = | 30+ pE) 3—gED) 7 )

f L (phr = pieps) (p'r = pip™) dp
l"

Equation (29) is similar in form to eqns (25) and (31) of Rcf. [4]. By applying eqns (28)
and (29), for different geometrical and physical parameters of annular plates, E? can be
solved directly and therefore the critical condition of wrinkling is obtained.

3. DISCUSSION AND CONCLUSIONS

To illustrate the application of the above results to practice, numerical examples are
shown below. The ratio of elastic modulus to yield stress, £/Y, is taken to be 500 and
Poisson's ratio to be 0.3. The value of ¢ can be calculated from eqn (29). and £} can also



562 L C. Ziaang and T. X. YU

5 & n=3
(o
Cc3 —
No wrinkling
08
8
Q7 —
06 — 9
W l 10
¥ o5
-
3 / !
o4 = / 2
I {3
03 T 14
i
02 15
ot Wreinkiing
L { { I l
o o1 oz 03 04 a5 06

Frg. 3. The catical values of £ .

be obtained for every given (/6. The well-known Powell method{6] is used as the solver of
cqn (29). The results shown in Frg. 3 are caleudated for ¢/h = 0.02.

The non-dimensional vadues of £/ £ corresponding to different wrinkling modes are
shown in Fig, 3, and the curves of { are plotted on Fig. 4 against & The regions above the
dashed line in Fig. 3 and on the right-hand side of the chain line in Fig. 4 are those where
plastic wrinkling cannot oceur. Figure 3 indicates that the value of EY/E almost remains
constant in a refatively large interval of . Figure 4 shows directly that for a smaller ¢, the
corresponding wave number n must be lurge once wrinkling takes place. That is to say, the
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Fig. 4. The critical curves of annular plites.
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Fig. 5. The variation of wave number #n with §.

wrinkling modes corresponding to a small wave number appear only if the width of those
Manges is large. Figures 3 and 4 also show that the values of { of two ncighbouring wrinkling
modes approach each other as ¢ decreases. This fact tells us that it is impossible to predict
exactly the wave number when wrinkling occurs at a lower value of £ because there exist
many disturbances during deep-drawing operation. Figure 5 compares the present results
with those from experiments[9]. It also supports the above conclusions. Figure S indicates
that the theoretical results of this paper are in good agreement with experimental values.
More accurate solutions can be obtained by the present method when better approximate
functions f(p) and g(0) are taken.

In this paper. a static criterion is applied to predict wrinkling. 1t is a well-established
fact that non-conservative systems should be analysed by the dynamical method. However,
the validity of the present analysis is preliminarily confirmed by some experimental results.
Of course, it is still open for further studies.

It follows from the procedure of the above analysis that the method provided in this
paper is convenient and forthright and is very suitable for enginecring applications. The
approximate solution obtained is simple in form and is in good agreement with experiments.
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