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THE PLASTIC WRINKLING OF AN ANNULAR
PLATE UNDER UNIFORM TENSION ON ITS

INNER EDGE
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Department of Mechanics. Peking University. People's Republic of China
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Abstrad-This paper analyses the plastic wrinkling of an annular plate subjected to in-plane
unifonn tension stress on its inner edge with the combined use of the Kantorovich method and the
Galerkin method. and discusses the appearance of wrinkles on the flange of a metal circular sheet
during its altisymmetric deep-drawing operation. It is shown that the method provided in this paper
is simple. convenient. and very suitable for engineering applications.
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inner ra,lius of an annulilr plate
outer radius of an ilOnular plate
undetermined eoellicient in approJlimilte wrinkling mode
parameter defined by elln (17)
Young's modulus
S(.'Cant mo,luli of o:lT,:ctive str..-ss -stmin curvc and unialtial stress strain curvc. rcspl.-ctivcly
deviatoric strain components
fum:tion of non-dimensional radial coordinate I'
funclion of circumferential eoonlinale ()
difTerenlialopcralors
number of waves
polar coordinales
devialorie slress eomponenls
plale Ihickness
mode of wrinkling
yield slress of Ihe plale malerial
slrain components
elr..'Clive slrain
non-dimensional parameler defined by ""lin (29)
parameters defined by e'lns (26)
Poisson's ralio in Ihe elaslic regime
parameter detined by c'ln (19)
non-dimensional pammeler. 1-/,#
non-dimensional radial eoordinilte. rjh. and one of ils valu.."S. a/h
o:lT..-clive stress
slress lensor
pilrameters defined by e'lns (Ja) and ObI. resp<.'Ctively.

I. INTRODUCTION

When the inner edge of an annular plate is loaded by an in-plane uniform tcnsile stress, the
stress statc of the platc. according to the theory of plasticity. can be expressed as

{

(1, = YIn (hlr)

(10 = Y{ln (hlr) - I]

(1rll = 0

(I)

if the plate material is regarded as being perfectly plastic and the total plate has yielded. As
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Fig. I. An annular plate under in-plane tension.

the circumferential stress. (10' is compressive (Fig. I). plastic buckling will occur cir­
cumferentially. when the uniform boundary stress. (1a. reaches a critical value. This appear­
ance is called plastic wrinkling.

Investigation of wrinkling has a great deal of significance in many branches of mech­
anical engineering. especially in the axisymmetric deep-drawing process of circular metal
sheets (Fig. 2). Engineers require that the flange ofa workpiece in its deep-drawing operation
should deform in its plane and not wrinkle because otherwise it will impair the quality of
the product. For this reason the wrinkling of an annular platc has becn thc focus of much
research attention over several dccadcs. Geckcler[l] simplified the problem and treatcd it
as a one-dimensional model. furnishing some formulae to predict the criticul circumferential
stress and the number of waves. His model was later employed and extended by many other
researchers[2-4]. Reference [5] realized the limitation of Geckeler's one-dimensional model
and studied the problem using a two-dimensional one by means of the energy method.
However. as recently pointed out by the authors[7]. their results may still be too simplistic
for general application.

In this paper. the plastic wrinkling equation is derived based on the aspect of stability
according to the two-dimensional model for the wrinkling analysis of an annular plate in
Ref. (5). and then the title problem is solved by the combined use of the methods of
Kantorovich and Galcrkin(8). The criterion for predicting plastic wrinkling is obtained and
the applications of the present results to the deep-drawing operation in sheet forming arc
discussed in detail. Some useful conclusions are obtained. It is shown that the method
provided in this paper is simple, convenient and very suitable for engineering applications.

2. SOLUTION

2.1. Plastic wrinkling equatiun
According to the theory of plasticity[5]. wc have

(2)

Fig. 2. The wrinkling of a flange in deep-drawing operation.
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where elJ and St; are deviatoric strain and deviatoric stress tensor, and eij and aij are
strain and stress components, respectively. The notation "cS(x)" indicates an infinitesimal
increment of a corresponding physical variable. Parameters r/J and 1/1 are defined by

and

r/J = (1-2'1)(£

1/1 = 31/(2a)

(3a)

(3b)

where E is Young's modulus and \. Poisson's ratio.l and aare effective strain and effective
stress. and are defined by

l = (?etA) 112

a= (JSjjStj) 1/2

respectively. By introducing the secant modulus

E, = ale

the following expression can be obtained from the uniaxial stress-strain state:

I I 1-2'1
E(I = E + 3E

~ "

where E~) is the secant modulus of the uniaxial stress-strain curve. In this way, we get

a 3E~

i=3-cPE~I'

(4)

(5)

(6)

For the annulur pl.He shown in Fig. I. wrinkling always occurs first at the outer edge
because 100tll'.1> is maximum through the plate, according to eqns (I). Therefore, the following
selection is wise and convenient for the wrinkling prediction of the annular plate, that is

(7)

Keeping these in mirtd and noting that stresses are uniformly distributed through the plate
thickness before wrinkling occurs so that E, is independent ofthe coordinate:. the wrinkling
differential equation for the annular plate can be expressed as

where

N, = ((f" No = ((fll

Obviously. when E~ = E. eqn (8) reduces to the elastic wrinkling equation.

(8)

(9)

(10)

(" )
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Substituting eqns (I) into eqn (8). and introducing the notation

p = rib (12)

the non-dimensional plastic wrinkling equation of the annular plate can be written as

DiI'V4 w+ln (p)V!w+Ow =0 (13)

where

? a~ 1 (l I 02

(14)V~ = -, + - - + --;- -,
CP" P cp p- eo"

v 4 = V2V! (15)

I C I CZ
(16)0=--+--,-,

pcp p" fO-

and

Dr;. = f2f[6rh 2(1+1b£?)'/JJ. (17)

2.2. Approximllt<' solution
For the flange of a mctal shect shown in Fig. 2. the following boundary conditions can

be given when the l1angc is considered as an annular plate mentioned above:

I\' ~ O. 1'# ~ I' ~ I

It' = O. P = PI

where

and

Assuming that eqn (13) has a solution of the form

w(P.O) = j{p)g{O)

(l8a)

(ISb)

(l8c)

(19)

(20)

(21)

then according to the observation from experiment (Fig. 2) and condition (18a). we can
take g(O) = I +cos (nO), where n is the number of waves. Therefore, the following equation
can be obtained easily by applying the well-known Kantorovich method:

(22)

where L l and L zare differential operators. i.e.
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{
d~ 3 d n~ }

L~= - 3In(p)d~+-[1+ln(p)]d-+-,[ln(p)-I] .
p- p p p.
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(23)

(24)

It is difficult to obtain the exact solution of eqn (22), although it is an ordinary differential
equation. Hence, we use the Galerkin method to get its approximate solution. To do so,
we take

(25)

This expression satisfies conditions (18a) and (18b), and meets condition (18c) in the sense
of the Kantorovich approach. In eqn (25), c is an undetermined coefficient and

(26)

arc the constants dependent on the properties of the plate m'ltcrial. Substitution ofeqn (25)
into the Galerkin equation. eqn (22), leads to

To obtain the non-trivial solution of eqn (22) as the form of eqn (25), it is necessary to take

Considering that

E
o 'I• t- II II

D# = Y h1 [3(I+4>E,)(3-4>E,)]

eqn (28) can be rewritten as

(29)

Equation (29) is similar in form to eqns (25) and (31) of Ref. [41. By applying eqns (28)
and (29), for different geometrical and physical parameters of annular plates, E~ can be
solved directly and therefore the critical condition of wrinkling is obtained.

3. DISCUSSION AND CONCLUSIONS

To illustrate the application of the above results to practice, numerical examples are
shown below. The ratio of elastic modulus to yield stress, E/ Y, is taken to be 500 and
Poisson's ratio to be 0.3. The value of' can be calculated from eqn (29), and E~ can also
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be ohtain~d for every giv~n lib. The well-known Powdlll1ethod(61 is used as the solver of
eqn (29). The results shown in Fig. .I arc eakulated for I/b n.n:!.

The non-dimensional valu~s of l,':'/Hcorresponding to ditrerent wrinkling modes arc
shown in Fig, .I. and the curves of ~ arc pl\ltled on Fig. 4 against ~. The regions above the
dashed line in Fig. .I and on th~ right-hand side of the chain line in Fig. 4 arc those where
plastic wrinkling cannot m;cur. Figure .I indicates that the value of E~'/E almost remains
constant in a relatively large interval of:;. Figure'; shows directly that for a smaller ~. the
corresponding wave number" must be hlrge once wrinkling lakes place. That is to say. the
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• Experimental results

n
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Fig. 5. The variation of wave numtll:r f/ with ~.

wrinkling modes corresponding to a small wave number appear only if the width of those
flanges is large. Figures J and 4 also show that the values of ( of two neighbouring wrinkling
modes appro'lch each other as ~ decre.lses. This fact tells us that it is impossible to predict
ex.lctly the wave number when wrinkling occurs .It a lower v'llue of ebeeausc there exist
many disturbances during deep-drawing operation. Figure 5 compares the present results
with those from c:<perimcnts[9j. It also supports the above conclusions. Figure 5 indicates
that the theoretic.t1 results of this paper arc in good agreement with experiment.t1 values.
More accurate solutions can be obtained by the present method when beller approximatc
functions /(1') .lI1d q(O) arc takcn.

In this paper, a static criterion is applied to predict wrinkling. It is a well-established
fact that non-conservative systems should be analysed by the dynamical method. However,
the validity of the present an.t1ysis is preliminarily confirmed by some experimental results.
Of course. it is still open for further studies.

It follows from the procedure of the above analysis that the method provided in this
paper is convenient and forthright and is very suitable for engineering applications. The
approximate solution obtained is simple in form and is in good agreement with experiments.
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